A Note on Rigidity of 3-Sasakian Manifolds
نویسندگان
چکیده
Making use of the relations among 3-Sasakian manifolds, hypercomplex mani-folds and quaternionic KK ahler orbifolds, we prove that complete 3-Sasakian manifolds are rigid.
منابع مشابه
On $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملNotes on some classes of 3-dimensional contact metric manifolds
A review of the geometry of 3-dimensional contact metric manifolds shows that generalized Sasakian manifolds and η-Einstein manifolds are deeply interrelated. For example, it is known that a 3-dimensional Sasakian manifold is η-Einstein. In this paper, we discuss the relationships between several special classes of 3-dimensional contact metric manifolds which are generalizations of 3-dimensiona...
متن کاملA Note on Doubly Warped Product Contact CR-Submanifolds in trans-Sasakian Manifolds
Warped product CR-submanifolds in Kählerian manifolds were intensively studied only since 2001 after the impulse given by B.Y. Chen in [2], [3]. Immediately after, another line of research, similar to that concerning Sasakian geometry as the odd dimensional version of Kählerian geometry, was developed, namely warped product contact CR-submanifolds in Sasakian manifolds (cf. [6], [7]). In this n...
متن کاملNon existence of totally contact umbilical slant lightlike submanifolds of indefinite Sasakian manifolds
We prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic proper slant lightlike submanifolds. We also prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian space forms.
متن کامل3-sasakian Manifolds in Dimension Seven, Their Spinors and G2-structures
It is well-known that 7-dimensional 3-Sasakian manifolds carry a oneparametric family of compatible G2-structures and that they do not admit a characteristic connection. In this note, we show that there is nevertheless a distinguished cocalibrated G2-structure in this family whose characteristic connection ∇ c along with its parallel spinor field Ψ0 can be used for a thorough investigation of t...
متن کامل